Texas A&M chemist David Barondeau (left), discussing research within his laboratory, located in the Texas A&M Interdisciplinary Life Sciences Building.
“We took all of our tools and threw it at this system to figure out how the proteins interact with one another,” said Cory, a member of the Barondeau Lab since June 2014. “It was nice to see all these things fit together. It was a nice biochemical and biophysical approach.”
To determine the structure of the cysteine desulfurase complex, the researchers used X-ray crystallography. After crystallizing the protein complex, the crystals were frozen in liquid nitrogen and sent to the Stanford Synchrotron Radiation Lightsource (SSRL) facility. There, they were exposed to high-intensity X-ray beams to obtain diffraction data that describes the structure of the protein complex in the crystal. Interactions observed in the crystal structure then were perturbed by making mutations in the analogous yeast proteins. The effect of these mutations in yeast allowed for the evaluation of protein-protein interfaces observed in the crystal structure to be investigated in an in vivo setting. Finally, an electron-density map of the complex was generated using negative stain electron microscopy, which also corresponded with the crystal structure data.
The team’s studies support a novel cysteine desulfurase architecture that Barondeau says provides clues to how eukaryotic mitochondria control the activity of this important biosynthetic pathway.
Beyond satisfying basic curiosity and pushing the boundaries of biochemistry, Cory says the results also have potential medical applications. Scientists in recent years have become increasingly interested in the frataxin protein and its ties to a rare neurological condition called Friedreich’s ataxia (FRDA) that affects one in 50,000 people.
FRDA patients possess a genetic mutation that prevents adequate production of the frataxin protein. Currently, there is no cure, but Cory says understanding the mechanism of iron-sulfur cluster biosynthesis may one day lead to viable treatment options.
“Friedreich’s ataxia leads to symptoms such as loss of coordination, cardiomyopathy and aggressive scoliosis — all which diminish patients’ quality of life,” Cory said. “I think the biggest thing that will come out of our current results is that we now have a platform for future studies. We have a platform to design other experiments to test the function of frataxin in the context of the three-protein complex. That’s really the biggest and most controversial question in the field: How does frataxin function?”
Although their results reveal vital information about an important protein complex, Cory admits they simultaneously present many new questions. For him, one of the most important takeaways is recognition of the critical role multidisciplinary research plays in the advancement of science.
“Not only are protein structures cool, but we can learn a lot from them,” Cory said. “Collaborative research is really important for advancing our science every day. If we can get a great group of people together, we can get it done. I think that’s what we’ve demonstrated here.”
The team’s PNAS paper, “Structure of human Fe-S assembly sub-complex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions,” can be viewed online along with related figures and captions.
###
This story by Chris Jarvis originally appeared on the College of Science website.