Health & Environment

EPA Awards Texas A&M $6 Million For Cardiac Health-Related Study

The EPA has awarded a $6 million grant to fund a multi-institutional collaboration between the Texas A&M CVM and NCSU investigating the effects of environmental toxicants on human health.
By Megan Palsa, Texas A&M College of Veterinary Medicine June 29, 2015

Dr. Ivan Rusyn (center) with students
Dr. Ivan Rusyn (center) with students

The Environmental Protection Agency (EPA) has awarded a $6 million grant to fund a multi-institutional collaboration between the Texas A&M College of Veterinary Medicine & Biomedical Sciences (CVM) and the Bioinformatics Research Center at North Carolina State University (NCSU) investigating the effects of environmental toxicants on human health with a focus on the potential adverse effects on the heart.

The large project is led by Dr. Ivan Rusyn, professor of veterinary integrative biosciences at the CVM. He and his team will develop and validate a novel approach to studies of chemical safety in both human cells and in mice.

“I am very pleased with the support that the Environmental Protection Agency has extended to the areas of in vitro and computational toxicology,” Rusyn said. “Research and development activities in the center will be directed at improving the scientific basis for decisions and will create solutions that can be immediately utilized by the stakeholders in environmental health sciences: the industry, the non-governmental organizations, and the state and federal regulators.”

According to Rusyn, the growing list of chemical substances in commerce and the complexity of environmental exposures represent an enormous challenge to the regulatory agencies that examine the toxic potential of chemical exposures. Traditional chemical safety testing evaluates only major potential health hazards of concern to human health, such as the ability of environmental chemicals to lead to cancer, cellular damage, or to long-term negative impacts on reproductive health. However, the World Health Organization (WHO) estimates that up to 23 percent of the global incidence of heart disease, a leading cause of death, may be attributable to environmental chemicals. The ability to assess non-pharmaceutical agents for cardiac toxicity testing has lagged behind other advanced efforts to create animal and cell-based models for studies of chemical safety.

“As an institution committed to the One Health initiative, this award from the EPA will significantly strengthen cross-disciplinary research aimed at improving the health and well-being of both animals and humans that share the same environmental risks,” said Dr. Robert Burghardt, associate dean for research and graduate studies.

Joining Rusyn on the project team are co-principal investigators Dr. David Threadgill, professor in the Department of Molecular & Cellular Medicine at the Texas A&M Health Science Center and the Department of Veterinary Pathobiology at the CVM, and Dr. Fred Wright, professor of statistics at NCSU.

“The major outcome of our work will be development and validation of a population-based human and mouse organotypic culture model for characterizing variability in cardiac toxicity,” Threadgill said.

“By adding an inter-individual variability dimension to the studies of environmental chemicals and drugs safety, we enable greater precision in toxicological findings,” added Wright.

The grant will establish the research center with Texas A&M serving as the lead institution. The long-term objective of the center is to advance the field of environmental health by establishing and validating effective, accurate, and fiscally responsible means for identifying and characterizing cardiac chemical hazards.

“Texas A&M has a tradition of high-impact research,” said Dr. Eleanor Green, the Carl B. King Dean of Veterinary Medicine. “The opportunity to establish and to lead this multi-institutional research center is a testament to Dr. Rusyn’s excellence and that of his colleagues. It is notable that Dr. Rusyn is one of our President’s Senior Hires supported by the Chancellor’s Research Initiative. This grant not only demonstrates the wisdom of this program but also the fulfillment of the stated goals by these outstanding faculty.”

The project was initiated as the result of recent advances in the development of models of functional cardiac muscle cells. This has led to new prospects for simulating complex chemical outcome pathways in the beating heart. Funding began June 1, 2015 and will carry through May 31, 2019.

Media contact: tamunews@tamu.edu.

Related Stories

Recent Stories